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Abstract

We derive a Wigner function with SU(3) symmetry for three-dimensional
systems exemplified by the polarization of three-dimensional electromagnetic
fields.

PACS numbers: 03.65.Ca, 42.25.Ja, 42.25.Kb

1. Introduction

The Wigner-function formulation of quantum mechanics and classical optics is extremely
attractive because of the physical insight and the simple formulae that it provides [1–3]. In
optics in particular, the Wigner function merges in single-formalism geometrical and wave
optics by describing propagation in terms of light rays, including without approximation all
second-order coherence phenomena.

In this work we propose a Wigner function for three-dimensional systems (quantum or
classical) with SU(3) symmetry. By SU(3) symmetry we mean invariance of basic system
properties under unitary 3 × 3 matrix transformations acting on the three-dimensional vector
state. This is not the construction of an analog of SU(3) or of their matrix elements. Instead,
this can be regarded as the assembly of nine standard phase-space Wigner functions between
pairs of components leading to a single scalar function in an extended space with SU(3)

transformation properties.
The main example we have in mind is optical polarization of three-dimensional classical

electromagnetic waves [4–6]. (The polarization Wigner function for two-dimensional waves
was considered in [3].) In this example, SU(3) transformations correspond to arbitrary energy-
conserving linear transformations of the field amplitudes, i.e., the three-dimensional analog
of lossless beam splitting. Many other Wigner functions for finite-dimensional systems have
been introduced, differing in their symmetries under different transformation groups [7].

2. The SU(3) Wigner function

We focus on three-dimensional systems involving a finite and discrete variable m taking
three values, say m = 1, 2, 3 without loss of generality. Additionally, some other variables
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may be necessary to fully describe the system. For definiteness, let us consider unbounded,
continuous, Cartesian position variables described by the real vector r. Since this is merely
an example of additional variables we may consider equally well two- or three-dimensional
vectors r without any noticeable change in the following formulae other than the change of
d2r for two-dimensional r (which may be denoted also as r⊥) by d3r for three-dimensional
r. In classical optics, it is usual to consider field distributions in two-dimensional planes,
so that the distribution evolves from the source plane to the observation plane. In any case,
the dimension of r is not related to the dimension of the system space. For example, the
electric field E(r) at each point r is in general a three-dimensional quantity irrespective of
the dimension of the distribution of points r. Note that we are assuming no transversality
condition at work nor any restriction on wave vectors.

The state vector |ψ〉 for pure, fully coherent states, for example, may be expressed in
many forms, such as

|ψ〉 =
⎛
⎝ψ1(r)

ψ2(r)

ψ3(r)

⎞
⎠ |ψ〉 =

∫
d2r

3∑
m=1

ψm(r)|r〉|m〉, (2.1)

where the vectors |m〉 represent the m variable and |r〉 represents position eigenstates with
〈r′|r〉 = δ(r′ −r). In classical optics, |m〉 are three orthogonal polarization states, and ψm(r)

represent the three electric-field components Em(r) on the polarization basis |m〉. Since we
are assuming no transversality condition nor any restriction on wave vectors, the electric field
is a three-dimensional complex vector leading to a continuum of possible polarization states.
The electric-field vector can be expressed in different complex three-dimensional bases, where
each basis element |m〉 can always be regarded as representing a definite polarization state. As
the simplest example, the three vectors |m〉 may represent linear vibration (linear polarization)
along three mutually orthogonal Cartesian axes, so that any other polarization state is obtained
as a complex linear combination of them.

The whole Wigner function including the r and m degrees of freedom can be expressed
as

Wρ(r,p,�) = Tr[ρΔ(r,p) ⊗ Δ(�)], (2.2)

where p represents linear momentum in quantum mechanics, or the transversal wave vector
in classical optics, � are the phase-space coordinates required to describe the m variable and
we have explicitly used the symbol ⊗ for tensor product to emphasize that Δ(r,p) and Δ(�)

act on different spaces. Throughout this paper the upper case trace Tr A means trace on both
spaces,

Tr A =
3∑

m=1

∫
d2r〈r|〈m|A|m〉|r〉 (2.3)

while the lower case trace tr B will represent trace just on the three-dimensional m-space,

tr B =
3∑

m=1

〈m|B|m〉. (2.4)

In quantum mechanics, ρ represents the density matrix while in classical optics it may represent
the cross-spectral density matrix Γ with the following equivalence:

〈�|〈r1|ρ|r2〉|m〉 ∝ ��,m(r1, r2), (2.5)
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where

��,m(r1, r2) =
∫

dτ 〈E�(r1, t + τ)E∗
m(r2, t)〉 exp(iωτ), (2.6)

�,m = 1, 2, 3, the angle brackets denote ensemble average, and ω is the frequency.
The position-momentum component of the Wigner function Δ(r,p) is well known

Δ(r,p) =
(

μ

2π

)2 ∫
d2r′|r + r′/2〉〈r − r′/2| exp(iμp · r′), (2.7)

where μ = 1/h̄ in quantum mechanics while μ = k in classical optics, where k is
the wavenumber. Note that for classical optics we are considering p as dimensionless.
Equivalently, we may say that μp is a wave vector k (for three-dimensional r and p), or its
projection on the plane k⊥ (for two-dimensional r and p).

Equivalently,

Wρ(r,p,�) = tr[H(r,p)Δ(�)], (2.8)

where H(r,p) is the 3 × 3 Wigner matrix with matrix elements

H�,m(r,p) =
(

μ

2π

)2 ∫
d2r′〈�|〈r − r′/2|ρ|r + r′/2〉|m〉 exp(iμp · r′). (2.9)

Equation (2.7) is the standard Wigner function for spinless particles in quantum mechanics or
for classical light waves. This should be clearly distinguished from another relevant example of
Wigner function arising in quantum optics, where the canonical variables (r,p) represent field
quadratures, (i.e., field components) which have nothing to do with the position momentum
or position-wave vector used in (2.7) [1].

Concerning the Δ(�) component we consider the following family of 3 × 3 Hermitian
matrices:

Δ(�) = 1

3
Λ0 +

8∑
j=1

λj (�)Λj , (2.10)

where Λj are the nine Gell–Mann matrices (the generators of the SU(3) group) [4]

Λ0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

Λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ Λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠

Λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ Λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠

Λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ Λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠

Λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ Λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠

(2.11)
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the functions λj (�) are

λ0 = 1

λ1 = 2 sin2 θ ′

2
sin

θ

2
cos

θ

2
cos φ

λ2 = 2 sin2 θ ′

2
sin

θ

2
cos

θ

2
sin φ

λ3 = sin2 θ ′

2

(
sin2 θ

2
− cos2 θ

2

)

λ4 = 2 cos
θ ′

2
sin

θ ′

2
sin

θ

2
cos(φ + φ′) (2.12)

λ5 = 2 cos
θ ′

2
sin

θ ′

2
sin

θ

2
sin(φ + φ′)

λ6 = 2 cos
θ ′

2
sin

θ ′

2
cos

θ

2
cos φ′

λ7 = 2 cos
θ ′

2
sin

θ ′

2
cos

θ

2
sin φ′

λ8 = 1√
3

(
sin2 θ ′

2
− 2 cos2 θ ′

2

)

with π � θ, θ ′ � 0, 2π � φ, φ′ � 0. The number of coordinates agrees with the number of
parameters required to specify a polarization ellipse in a three-dimensional space: two angles
are necessary to specify the plane containing the ellipse, and two more angles determine the
eccentricity and orientation of the ellipse.

The matrices Λj and the functions λj (�) satisfy similar orthogonality relations

tr(ΛjΛ�) = 2δj,� + δj,0δ�,0∫
d�λj(�)λ�(�) = (4π)2

6
(δj,� + 5δj,0δ�,0)

(2.13)

with

d� = 4 sin θ cos
θ ′

2
sin3 θ ′

2
dθ dθ ′ dφ dφ′ (2.14)

and ∫
d� = (4π)2. (2.15)

Alternatively, the family Δ(�) can be expressed as

Δ(�) = 2E(�)E†(�) − 1
3Λ0, (2.16)

where E(�) are the states obtained by the action of an SU(3) transformation V(�) on the
vector (0, 0, 1) [5, 8],

E(�) =

⎛
⎜⎝

sin θ
2 sin θ ′

2 exp[−i(φ + φ′)]

cos θ
2 sin θ ′

2 exp(−iφ′)

cos θ ′
2

⎞
⎟⎠ = V(�)

⎛
⎝0

0
1

⎞
⎠ (2.17)

with E†(�)E(�) = 1, and E†(�)ΛjE(�) = λj (�).
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3. Main properties

The Wigner function proposed above has the following properties:

(i) The family of operators Δ(�) provides an invertible correspondence A ↔ WA(�)

between arbitrary 3 × 3 matrices A and functions WA(�):

WA(�) = tr[AΔ(�)] A = 3

(4π)2

∫
d�WA(�)Δ(�). (3.1)

(ii) Wρ(r,p,�) provides complete information about second-order properties of the system
(i.e., proportional to 〈ψ�ψ

∗
m〉 or 〈E�E

∗
m〉) since we can express the whole density matrix

(or cross-spectral density tensor) in terms of Wρ(r,p,�):

〈�|〈r1|ρ|r2〉|m〉 = 3

(4π)2

∫
d2p d�Wρ[(r1 + r1)/2,p,�] exp[iμp · (r1 − r2)]

×〈�|Δ(�)|m〉. (3.2)

(iii) By construction Δ†(�) = Δ(�) so that matrix Hermitian conjugation is equivalent
to complex conjugation of the Wigner function WA†(�) = W ∗

A(�) and vice versa. In
particular, Hermitian matrices A = A† (such as density matrices and cross-spectral density
tensors) are associated with real functions WA(�) = W ∗

A(�).
(iv) Matrix trace corresponds to � integration:

3

(4π)2

∫
d�WA(�) = tr A

3

(4π)2

∫
d�WA(�)WB(�) = tr(AB).

(3.3)

(v) The correspondence A ↔ WA(�) is endowed with a suitable transformation law under
SU(3) transformations U:

WU†AU(�) = WA(�′), (3.4)

where �′ = �′(�, U) is a coordinate transformation with d�′ = d� [5]. This is because

WU†AU(�) = tr[AUΔ(�)U†] (3.5)

and

UΔ(�)U† = 2UE(�)E†(�)U† − 1
3Λ0 = 2E(�′)E†(�′) − 1

3Λ0, (3.6)

where

E(�′) = UE(�) = UV(�)

⎛
⎝0

0
1

⎞
⎠ = V(�′)

⎛
⎝0

0
1

⎞
⎠ . (3.7)

Therefore UΔ(�)U† = Δ(�′) and the SU(3) transformation U†AU is equivalent to the
transformation of the arguments of WA(�).

The practical implementation of these transformations is not as simple as in the SU(2)
case. Nevertheless, we can take advantage of the fact that SU(3) transformations can
be expressed as the product of three consecutive SU(2) transformations between pairs of
components [8], so they might be implemented by the combination of beam splitters and
phase shifters. This has already been taken into account to construct arbitrary SU(n)

transformations in a slightly different context in [9].
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(vi) The SU(3) Wigner function can be related to the normalized SU(3) Q function defined by
projection on the states E(�) as

QA(�) = 3

(4π)2
E†(�)AE(�) (3.8)

so that

WA(�) = 2
3 (4π)2QA(�) − 1

3 tr A. (3.9)

(vii) An alternative expression for W(r,p,�) is

W(r,p,�) = 1

3
S0(r,p) +

8∑
j=1

λj (�)Sj (r,p), (3.10)

where Sj (r,p), for j = 0, 1, . . . , 8, are

Sj (r,p) = Tr[ρΔ(r,p) ⊗ Λj ] = tr[H(r,p)Λj ]. (3.11)

In classical optics the functions Sj (r,p) can be regarded as generalized Stokes parameters
of the light ray at point r propagating along the direction specified by p [3].

(viii) Focusing on classical optics we can construct a reduced space-polarization Wigner
function W(r,�) by removing the dependence on p,

W(r,�) =
∫

d2p W(r,p,�) = tr[Γ(r, r)Δ(�)] (3.12)

which describes the polarization properties at point r. This is equivalent to

W(r,�) = 1

3
s0(r) +

8∑
j=1

λj (�)sj (r), (3.13)

where

sj (r) =
∫

d2p Sj (r,p) = tr[Γ(r, r)Λj ] (3.14)

are the generalization to three-dimensional electromagnetic fields of the standard Stokes
parameters [4, 5].

(ix) The reduced space-polarization Wigner function allows us to express the degree of
polarization P(r) for the three-dimensional light at point r as

P 2(r) = 8π2
∫

d�

[
WN(r,�) − 1

(4π)2

]2

. (3.15)

This is the distance between the normalized Wigner function associated with Γ(r, r):

WN(r,�) = W(r,�)∫
d�′ W(r,�′)

(3.16)

and the uniform Wigner function WN(r,�) = 1/(4π)2 associated with second-order fully
unpolarized light with Γ(r, r) ∝ Λ0. By property (v) above the degree of polarization is
invariant under SU(3) transformations.

The definition (3.15) coincides with previous approaches to the degree of polarization
P(r) for three-dimensional light, which are derived from the Hilbert–Schmidt matrix distance
to unpolarized light, or as the length of the Stokes vector [4–6],

P 2(r) = 3

2
tr

[(
1

3
Λ0 − Γ(r, r)

tr Γ(r, r)

)2
]

= 3

4

∑8
j=1 s2

j (r)

s2
0(r)

. (3.17)

6
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Finally, P(r) can also be expressed as

P 2(r) = 32π2
∫

d�

[
Qγ(r,�) − 1

(4π)2

]2

. (3.18)

This is the distance between the Q function Qγ associated with the normalized cross-spectral
density tensor γ(r) = Γ(r, r)/ tr[Γ(r, r)] and the uniform Q function QΛ0(r,�) = 1/(4π)2

associated with second-order fully unpolarized light with Γ(r, r) ∝ Λ0. This idea of degree
of polarization as a distance between Q functions agrees with the analyses in [5, 10].

4. Conclusions

We have derived a scalar, real and complete Wigner function for three-dimensional systems
with SU(3) symmetry, classical and quantum. The action of unitary 3 × 3 matrices is simply
described by a change of variables. The SU(3) Wigner function can be alternatively expressed
in terms of generalized Stokes parameters. In particular, we have shown that this provides a
simple picture of the degree of polarization of three-dimensional electromagnetic fields.

Acknowledgments

A L acknowledges support from project no. FIS2008-01267/FIS of the Spanish Dirección
General de Investigación del Ministerio de Ciencia e Innovación.

References

[1] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1857
Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
Bastiaans M J 1978 Opt. Commun. 25 26
Bastiaans M J 1979 J. Opt. Soc. Am. 69 1710
Sudarshan E C G 1981 Phys. Rev. A 23 2802
Hillery M, O’Connell R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
Bastiaans M J 1986 J. Opt. Soc. Am. A 3 1227
Pedersen H M 1991 J. Opt. Soc. Am. A 8 176
Lee H-W 1995 Phys. Rep. 259 147
Dragoman D 1997 Progress in Optics vol 37 (Amsterdam: Elsevier) p 1
Torre A 2005 Linear Ray and Wave Optics in Phase Space (Amsterdam: Elsevier)
Luis A 2007 Eur. J. Phys. 28 231

[2] Várilly J C and Gracia-Bondı́a J M 1989 Ann. Phys., NY 190 107
[3] Luis A 2005 Opt. Commun. 246 437

Luis A 2005 Opt. Commun. 251 243
Luis A 2006 Opt. Commun. 263 141
Luis A 2006 J. Opt. Soc. Am. A 23 2855
Luis A 2007 J. Opt. Soc. Am. A 24 2070
Luis A 2007 Phys. Rev. A 76 043827
Luis A 2008 Opt. Lett. 33 1497

[4] Brosseau Ch 1998 Fundamentals of Polarized Light: A Statistical Optics Approach (New York: Wiley)
Carozzi T, Karlsson R and Bergman J 2000 Phys. Rev. E 61 2024
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